
Module-2: Simultaneous Differential Equations of

First-Order and First Degree

1. Introduction

Systems of simultaneous differential equations of the first-order and first-degree of

the type

dxi
dt

= fi(x1,x2, · · · ,xn, t), (i = 1,2, · · · ,n) (1)

arise frequently in mathematical physics, e.g., in the general theory of radioactive

transformation, harmonic oscillator, heavy string hanging from two points of support

etc. The problem is to find n functions xi which depend on t and the initial condition

and which satisfy the set of equations (1) identically in t.

For example, an nth-order differential equations given by

dnx
dtn

= f

(
x,

dx
dt

,
d2x

dt2
, · · · , d

n−1x

dtn−1
, t

)
may be written in the form

dx
dt

= y1,
dy1
dt

= y2,
dy2
dt

= y3, · · · ,
dyn−1
dtn−1

= f (x,y1, y2, · · · , yn−1, t) (2)

This shows that it is a special case of (1).

2. Simultaneous Equations in Three Variables

Let us consider equations in three variables x, y, z as

P1dx+Q1dy +R1dz = 0,

P2dx+Q2dy +R2dz = 0,

where each of Pi , Qi , Ri , (i = 1,2), is a function of x, y, z. It follows that

dx
Q1R2 −Q2R1

=
dy

R1P2 −R2P1
=

dz
P1Q2 − P2Q1

i.e.
dx
P

=
dy

Q
=
dz
R
, (3)
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Chapter 1 Basic Concepts of Partial Differential Equations

where P = Q1R2 −Q2R1, Q = R1P2 − R2P1, R = P1Q2 − P2Q1 and each of P , Q, R is a

function of x, y, z.

Equations (3) over a set of simultaneous equations of first order and first degree.

The existence and uniqueness of solutions of equations (3) follows from the following

theorem which we state without proof.

Theorem 1: Suppose the functions f (x,y,z) and g(x,y,z) be defined and continuous in the

region |x − a| < k, |y − b| < l, |z − c| < m, where a, b, c and k, l, m are constants and satisfy

the Lipschitz condition

|f (x,y,z)− f (x,η,ζ)| < A1|y − η|+B1|z − ζ|,
(4)

|g(x,y,z)− g(x,η,ζ)| < A2|y − η|+B2|z − ζ|,

in the defined region, in which Ai Bi , (i = 1,2), are some finite constants. Then there exists

a unique pair of function y(x) and z(x), continuous and having continuous derivatives in a

suitable interval |x − a| < h, which satisfy the differential equations

dy

dx
= f (x,y,z),

dz
dx

= g(x,y,z), (5)

and the conditions y(a) = b, z(a) = c.

Fig. 1

The above theorem shows that there exist two cylinders y = y(x) and z = z(x) pass-

ing through the points (a,b,0) and (a,0, c) such that the equations (5) hold. The com-

plete solutions of these pair of equations, therefore, consist of the set of points lying

on both the cylinders, i.e., on the curve of intersection Γ passing through the point

(a,b,c). Since a, b, c are arbitrary, so the general solution of the pair of equations con-

sists of curves of intersection of one-parameter system of cylinders of which y = y(x)
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and z = z(x) are also two members. Hence, the general solution of a set of simultane-

ous equations of the type (3) is a two-parameter family of curves in three-dimensional

space.

3. Methods of Solution

To solve equations of the form (3), it may be noted that if one can derive solutions

of these equations of the form

u1(x,y,z) = c1, u2(x,y,z) = c2, (6)

where c1 and c2 are arbitrary constants, then by varying these constants, one can ob-

tain a two-parameter family of curves satisfying the differential equations (3).

Let us now discuss some methods for solving equations of the type (3).

I. Method-1:

Consider the equation u1(x,y,z) = c1 to be a one-parameter system of surfaces so that

any tangential direction through the point (x,y,z) to this surface satisfies the relation

∂u1
∂x

dx+
∂u1
∂y

dy +
∂u1
∂z

dz = 0.

To determine u1, we look for three functions P ′(x,y,z), Q′(x,y,z)) and R′(x,y,z) such

that

P P ′ +QQ′ +RR′ = 0 (7)

where P ′ = ∂u1
∂x , Q

′ = ∂u1
∂y , R

′ = ∂u1
∂z and P ′dx+Q′dy +R′dz is an exact differential.

Similarly, we find u2.

Example 1: Find the integral curves of the equations

dx
xz − y

=
dy

yz − x
=

dz

1− z2

Solution: Here P = xz − y, Q = yz − x, R = 1− z2.

Let us choose P ′ = z+1, Q′ = z+1, R′ = x+ y. Then

P P ′ +QQ′ +RR′ = (xz − y)(z+1) + (yz − x)(z+1) + (1− z2)(x+ y) = 0
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and P ′dx +Q′dy + R′dz = (z + 1)dx + (z + 1)dy + (x + y)dz = d{(x + y)(z + 1)}, an exact

differential. Hence u1 = (x+ y)(z+1).

Again, we choose P ′′ = z−1, Q′′ = 1−z, R′′ = x−y so that P P ′′+QQ′′+RR′′ = (xz−1)(z−

1) + (yz − x)(1− z) + (1− z2)(x − y) = 0

and P ′′dx +Q′′dy +R′′dz = (z − 1)dx + (1 − z)dy + (x − y)dz = d{(x − y)(z − 1)}, an exact

differential so that u2 = (x − y)(z − 1).

Hence, the integral curves of the given differential equations are the members of

the two-parameter family

(x+ y)(z+1) = c1, and (x − y)(z − 1) = c2,

where c1 and c2 are arbitrary constants.

II. Method-2:

Let us choose two sets of three functions, (P ′,Q′,R′) and (P ′′,Q′′,R′′) such that each of

P ′dx+Q′dy +R′dz

P P ′ +QQ′ +RR′
and

P ′′dx+Q′′dy +R′′dz

P P ′′ +QQ′′ +RR′′

is an exact differential dw′ and dw′′ respectively, say. Since, each of these is equal to
dx
P , so there must exist the relation dw′ = dw′′ i.e., w′ = w′′ + c, between x, y and z, c

being an arbitrary constant.

Example 2: Find the integral curves of the equations

dx
y +αz

=
dy

z+ βx
=

dz
x+γy

,

α, β, γ being constants.

Solution: If λ, µ, ν are constant multipliers, then each of the given ratios is equal to

λdx+µdy + νdz

λ(y +αz) +µ(z+ βx) + ν(x+γy)

and this expression will be an exact differential, provided it is of the form 1
ρ
λdx+µdy+νdz
λx+µy+νz

and this is possible iff

−ρλ+ βµ+ ν = 0,

λ− ρµ+γν = 0 (8)

αλ+µ− ρν = 0.
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This possesses a solution if ρ is a root of the equation∣∣∣∣∣∣∣∣∣∣∣∣
−ρ β 1

1 −ρ γ

α 1 −ρ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, i.e. of ρ3 − (α + β +γ)ρ − (1 +αβγ) = 0

Let ρ1, ρ2, ρ3 be the roots of this equation. Substituting the values of ρi in (8) and

solving for λi , µi , νi , (i = 1,2,3), we get the expressions

1
ρ1

λ1dx+µ1dy + ν1dz

λ1x+µ1y + ν1z
,

1
ρ2

λ2dx+µ2dy + ν2dz

λ2x+µ2y + ν2z
1
ρ3

λ3dx+µ3dy + ν3dz

λ3x+µ3y + ν3z

Taking dw′ =
1
ρ1

λ1dx+µ1dy + ν1dz

λ1x+µ1y + ν1z
, and dw′′ =

1
ρ2

λ2dx+µ2dy + ν2dz

λ2x+µ2y + ν2z

the equation dw′ = dw′′ gives on integration λ1x+µ1y + ν1z = c1(λ2x+µ2y + ν2z)ρ1/ρ2

If we take dw′′ = 1
ρ3

λ3dx+µ3dy+ν3dz
λ3x+µ3y+ν3z

, then λ1x+µ1y + ν1z = c2(λ3x+µ3y + ν3z)ρ1/ρ3

Thus, the required solutions are

λ1x+µ1y + ν1z = c1(λ2x+µ2y + ν2z)
ρ1/ρ2 , λ1x+µ1y + ν1z = c2(λ3x+µ3y + ν3z)

ρ1/ρ3

III. Method-3:

If one of the variables, say z, is absent from one equation of the set (3) then the

integral curves can be obtained in a simple way. Thus, when z is absent in P and Q,

then we have dx
P = dy

Q i.e. dy
dx = Q

P , (p , 0), which has a solution of the type f (x,y,c1) = 0.

Elimination of x or y from one or other equations of (3), we obtain another relation

between x and z or y and z from which we get the second solution.

Example 3: Solve the equations

dx

y2 + z2 − x2
=

dy

−2xy
=

dz
−2xz

.

Solution: From the last two equations, we get

dy

dz
=
y

z
⇒ y = c1z, c1 being constant.

Also, from the first and last equations we have

dx

(c21 +1)z2 − x2
=

dz
−2xz

⇒ (c21 +1)dz = −2xzdx − x
2dz

z2
= −d

(
x2

z

)
Integrating, we get (c21 +1)z = −x

2

z
+ c2⇒ c21z

2 + z2 = −x2 + c2z

or y2 + z2 = −x2 + c2z, i.e. x2 + y2 + z2 = c2z

Hence, the required solutions are y = c1z, x2 + y2 + z2 = c2z.
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4. Orthogonal Trajectories of a System of Curves on a Surface

Suppose a system of curves lie on the surface whose equation is

F(x,y,z) = 0 (9)

Then a system of curves cutting every curve of the system lying on the surface at right

angles is called the system of orthogonal trajectories on the surface of the given system

of curves. The original system of curves may, therefore, be thought as the intersection

of the surface (9) with the one-parameter family of surfaces

G(x,y,z) = C, (10)

where C is a parameter.

Fig. 2

As an illustration, consider the system of circles (shown by full lines in Fig. 2)

lying on the cone x2 + y2 = z2 tan2α by the system of parallel planes z = C, where C

is a parameter. Then the generators (shown by dotted lines in Fig. 2) are orthogonal

trajectories.

In general, the tangential direction (dx,dy,dz) to the given curve through the point

(x,y,z) on the surface (9) satisfies the equations

∂F
∂x

dx+
∂F
∂y

dy +
∂F
∂z

dz = 0

and
∂G
∂x

dx+
∂G
∂y

dy +
∂G
∂z

dz = 0

so that
dx
P

=
dy

Q
=
dz
R

(11)

where P =
∂(F,G)
∂(y,z)

, Q =
∂(F,G)
∂(z, x)

, R =
∂(F,G)
∂(x,y)
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Fig. 3

Now the curve through the point (x,y,z) of the orthogonal system has tangential

direction (dx′,dy′,dz′) (Fig. 3) lying on the surface (9) implying

∂F
∂x

dx′ +
∂F
∂y

dy′ +
∂F
∂z

dz′ = 0 (12)

and is perpendicular to the original system of curves. So, we have from (12)

P dx′ +Qdy′ +Rdz′ = 0 (13)

Equations (12) and (13) together yield

dx′

P ′
=
dy′

Q′
=
dz′

R′
(14)

where P ′ = R
∂F
∂y
−Q∂F

∂z
, Q′ = P

∂F
∂z
−R∂F

∂z
, R′ =Q

∂F
∂x
− P ∂F

∂y
. (15)

The solution of the equation (14) with the relation (9) gives the system of orthogonal

trajectories.

Example 4: Find the orthogonal trajectories on the surface x2+y2+2f yz+d = 0 of its

curves of intersection with planes parallel to the plane xoy.

Solution: Let z = k, (k being constant), be the plane parallel to the x ·y. Then the given

system of conics is characterized by pair of equations

xdx + (y + f z)dy + f ydz = 0 and dz = 0.

which are equivalent to

dx
y + f z

=
dy

−x
=
dz
0
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The system of orthogonal trajectories is, therefore, given by the pair of equations

xdx+ (y + f z)dy + f ydz = 0 and (y + f z)dx − xdy = 0

i.e. by
dx
f xy

=
dy

f y(y + f z)
=

dz

−x2 − (y + f z)2

i.e.
dx
f xy

=
dy

f y(y + f z)
=

dz

d − f 2z2
(∵ x2 + y2 +2f z+ d = 0⇒ x2 + (y + f z)2 = f 2z2 − d)

⇒ dx
f xy

=
f zdy

f 2yz(y + f z)
=

f ydz

f y(d − f 2z2)
=

d(f yz)
f y(f yz+ d)

⇒ dx
x

=
d(f yz+ d)
f yz+ d

⇒ f yz+ d = cx, c being a parameter.

Thus the orthogonal trajectories are f yz+ d = cx, x2 + y2 +2f yz+ d = 0.
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