MoODULE-2: SIMULTANEOUS DIFFERENTIAL EQUATIONS OF

FirRsT-ORDER AND FIrRsT DEGREE

1. Introduction

Systems of simultaneous differential equations of the first-order and first-degree of

the type

T f e xt), (121,200 )

arise frequently in mathematical physics, e.g., in the general theory of radioactive
transformation, harmonic oscillator, heavy string hanging from two points of support
etc. The problem is to find n functions x; which depend on t and the initial condition
and which satisfy the set of equations (1) identically in ¢.

For example, an nth-order differential equations given by

d"x dx d?x a1y

a I\ @ ae T ae!
may be written in the form
dx d d dy,_
ar v %:yz’ % R d}t}Z—i = [ Y192 - Vn-1,1) (2)

This shows that it is a special case of (1).

2. Simultaneous Equations in Three Variables

Let us consider equations in three variables x, y, z as

Pldx+ Qldy +R1dZ = 0,
PZdX + dey + RZdZ =0,

where each of P, Q;, R;, (i =1,2), is a function of x, y, z. It follows that

dx 3 dy 3 dz
QiR -QRy Ry -RPp PQy—-PQy
_ dx dy dz
1.€. ? - 6 — EI (3)
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where P = Q1R, — QyRy, Q = R{P, - R,P;, R = PLQ, — P,Q; and each of P, Q, Ris a
function of x, v, z.

Equations (3) over a set of simultaneous equations of first order and first degree.
The existence and uniqueness of solutions of equations (3) follows from the following

theorem which we state without proof.

Theorem 1: Suppose the functions f(x,vy,z) and g(x,v, z) be defined and continuous in the
region |x —a| <k, [y—b| <1, |z—c| < m, where a, b, c and k, I, m are constants and satisfy

the Lipschitz condition

If (x,9,2) = f(x,17,0)] < Aily—nl+Bilz—-C|,

(4)
Ig(x,v,2) - g(x,1,0)| < Azly—#l+Bylz—C|,

in the defined region, in which A; B;, (i = 1,2), are some finite constants. Then there exists
a unique pair of function y(x) and z(x), continuous and having continuous derivatives in a
suitable interval |x — a| < h, which satisfy the differential equations

dy dz
=y, =gy, (5)

and the conditions y(a) = b, z(a) = c.

~ y=y(x)

r ;\
z=z(x)

(a,b,0)

)

(a,0,¢) ][

Fig. 1

The above theorem shows that there exist two cylinders y = y(x) and z = z(x) pass-
ing through the points (4,b,0) and (4,0, c) such that the equations (5) hold. The com-
plete solutions of these pair of equations, therefore, consist of the set of points lying
on both the cylinders, i.e., on the curve of intersection I' passing through the point
(a,b,c). Since a, b, c are arbitrary, so the general solution of the pair of equations con-

sists of curves of intersection of one-parameter system of cylinders of which y = y(x)

3
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and z = z(x) are also two members. Hence, the general solution of a set of simultane-
ous equations of the type (3) is a two-parameter family of curves in three-dimensional

space.

3. Methods of Solution

To solve equations of the form (3), it may be noted that if one can derive solutions

of these equations of the form

ur(x,9,2) = ¢1, uz(x,9,2) = ¢, (6)

where ¢; and c, are arbitrary constants, then by varying these constants, one can ob-
tain a two-parameter family of curves satisfying the differential equations (3).

Let us now discuss some methods for solving equations of the type (3).

I. Method-1:

Consider the equation u;(x,y,2) = c; to be a one-parameter system of surfaces so that

any tangential direction through the point (x, v, z) to this surface satisfies the relation

aul al/ll aul _
e dx + 7y dy + P dz=0

To determine u;, we look for three functions P’(x,v,z), Q’(x,v,2)) and R'(x,y,z) such
that

PP'+QQ'+RR =0 (7)

where P’ = aul , Q= 9”1 , R’ = 9”1 and P’dx+ Q’dy + R'dz is an exact differential.

Similarly, we find u,.

Example 1: Find the integral curves of the equations

dx dy  dz

xz—y yz-x 1-22

Solution: Here P=xz-y,Q=yz—-x,R=1 — 22,
Let us choose P’=z+1,Q"=z+1,R"=x+y. Then
PP’+QQ +RR = (xz—-y)(z+ 1)+ (yz—x)(z+ 1)+ (1 = 2%)(x + p) =

4
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and P’dx + Q'dy+R'dz = (z+ 1)dx + (z+ 1)dy + (x + y)dz = d{(x + v)(z + 1)}, an exact
differential. Hence u; = (x +p)(z + 1).
Again, we choose P =z-1, Q" =1-z, R” = x—y so that PP”"+QQ”+RR"” = (xz—1)(z—
1)+ (yz-x)(1-2)+(1-2%)(x-p) =0
and P”dx+ Q”dy +R"dz = (z—1)dx+ (1 —z)dy + (x —y)dz = d{(x — p)(z — 1)}, an exact
differential so that u; = (x —y)(z—1).

Hence, the integral curves of the given differential equations are the members of

the two-parameter family
(x+y)(z+1)=cy, and (x—-p)(z—1) =cy,

where ¢; and c; are arbitrary constants.

II. Method-2:

Let us choose two sets of three functions, (P’, Q’,R") and (P”, Q”,R”) such that each of

P'dx+Q’dy +R'dz O P’dx+Q"dy+R"dz
PP’+ QQ'+RR’ PP”+QQ" +RR”

is an exact differential dw’ and dw” respectively, say. Since, each of these is equal to

dx

%, so there must exist the relation dw’ = dw” i.e., w' = w” + ¢, between x, y and z, c

being an arbitrary constant.

Example 2: Find the integral curves of the equations

dx  dy  dz
y+az z+px x+yy

a, B, y being constants.

Solution: If A, u, v are constant multipliers, then each of the given ratios is equal to

Adx + pdy +vdz
Ay +az)+pu(z+ px)+v(x+yy)

1 Adx+pdy+vdz

and this expression will be an exact differential, provided it is of the form o Xxt vz

and this is possible iff

—-pA+pu+v = 0,
A-pptyv = 0 (8)

Il
e

al+pu—pv
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This possesses a solution if p is a root of the equation

- B 1
1 —-p y |=0, ie of p>—(a+p+yp-(1+apy)=0
a 1 -—p

Let p1, p2, p3 be the roots of this equation. Substituting the values of p; in (8) and

solving for A;, p;, v;, (i =1,2,3), we get the expressions

1 )\ldx+;41dy+v1dz 1 /\zdx+y2dy+v2dz 1 /\3dx+y3dy+v3dz
p1 AMx+my+viz | pr AX+ oy +vaz P3  A3X+pzy +v3z
Taking duw’ = i/lldx+y1dy + vldzl and duw’ = i/\zdx+ Yrdy +vodz
p1 Mx+my+viz P2 Axx+ v +vyz

the equation dw’ = dw” gives on integration A x + v + v1z = ¢1(AyX + pop + v,2)P1/P2
1 Azdx+pszdy+vsdz _ /
If we take dw” = D3 Aaxtpnytvaz then )\1x Tty +Vviz= C2(/\3x + U3y + V3Z)pl P3

Thus, the required solutions are

Mx+puy+viz=ci(Arx+ poy + VZZ)pl/pz, MX+puy+viz=cr(A3x+ ps3y + 1/32)91/p3

II1. Method-3:

If one of the variables, say z, is absent from one equation of the set (3) then the
integral curves can be obtained in a simple way. Thus, when z is absent in P and Q,
then we have % = %’ ie. % = %, (p = 0), which has a solution of the type f(x,v,c;) = 0.
Elimination of x or y from one or other equations of (3), we obtain another relation

between x and z or y and z from which we get the second solution.

Example 3: Solve the equations

dx _dy  dz
p2+2z2-x2  -2xy -2xz’

Solution: From the last two equations, we get

d :
d—z = % =y =cy12, ¢ being constant.

Also, from the first and last equations we have
dx _dz
(cZ+1)z22-x2  —2xz

:>(cf+1)dz:—

72

2xzdx —x2%dz B —d(X—Z)
z

2
. X
Integrating, we get (c? +1)z = -, te= 222+ 22 = —x? +cyz

or p?+z7=-x?+cyz, ie. xP+pi 428 =)z

Hence, the required solutions are y = ¢z, x> + 2 + 2% = ¢5z.
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4. Orthogonal Trajectories of a System of Curves on a Surface
Suppose a system of curves lie on the surface whose equation is
F(x,y,2z)=0 (9)

Then a system of curves cutting every curve of the system lying on the surface at right
angles is called the system of orthogonal trajectories on the surface of the given system
of curves. The original system of curves may, therefore, be thought as the intersection

of the surface (9) with the one-parameter family of surfaces
G(x,v,2)=C, (10)

where C is a parameter.

N
N7/

i/

LY

VY
/
X

Fig. 2

As an illustration, consider the system of circles (shown by full lines in Fig. 2)
lying on the cone x? + y2 = z?tan® & by the system of parallel planes z = C, where C
is a parameter. Then the generators (shown by dotted lines in Fig. 2) are orthogonal
trajectories.

In general, the tangential direction (dx, dy, dz) to the given curve through the point

(x,1,z) on the surface (9) satisfies the equations

ﬁdxjL ﬁdy+ H_sz =0

ox Y 0z
and g—fdx + aa—;;dy + aa—cz;dz =0
so that %:%’:% )
e PG G
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(dx’,dy’,dz’)

(dx,dy,dz)

Fig. 3

Now the curve through the point (x,y,z) of the orthogonal system has tangential
direction (dx’,dy’,dz’) (Fig. 3) lying on the surface (9) implying

OF , OF , OF,,
gdx +a—yd}) +$dz =0 (12)

and is perpendicular to the original system of curves. So, we have from (12)
Pdx’+Qdy’+Rdz' =0 (13)

Equations (12) and (13) together yield

dx’ dy’ dz
p’ - Q/ v R’ (14)
, OF 9F _, 9F JF _, _9F OF

where P _Ra—y—QZ, Q'=P>--R>, R'=Q~ Pay. (15)

The solution of the equation (14) with the relation (9) gives the system of orthogonal

trajectories.

Example 4: Find the orthogonal trajectories on the surface x*> +y%+2fyz+d = 0 of its

curves of intersection with planes parallel to the plane xoy.

Solution: Let z =k, (k being constant), be the plane parallel to the x-y. Then the given

system of conics is characterized by pair of equations
xdx+(y+ fz)dy+ fydz=0 and dz=0.

which are equivalent to

ix _dy_dz
v+fz -x 0

8
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The system of orthogonal trajectories is, therefore, given by the pair of equations

xdx+(y+ fz)dy+ fydz=0 and (y+ fz)dx—xdy =0

ie b dx = dy = dz

S T Bb+fa) -yt f2)?
. d d d
ie. f;y :fy(yi)-fz) _ d_;zzz (o492 +2fz+d =0 X2 +(p+ f2)2 = f22% - d)
N dx  fzdy _ fydz  d(fyz) dx d(fyz+d)

fxy  Fyay+fa) fold-f222)  folfyz+d)  x  fyz+d

=  fyz+d=cx, cbeinga parameter.

Thus the orthogonal trajectories are fyz+d = cx, x> +y*> +2fyz+d = 0.



